

Product Features

- GaN on SiC HEMT
- In/Out 50Ω Impedance Matching
- Surface Mount Hybrid Type
- Small Size & Weight
- · High Efficiency
- Low Cost
- Custom design available

Applications

- · Radio System
- TRS(Trunked Radio System)
- RF Sub-Systems
- Base Station

Package Type: NP-18

Description

The power amplifier module is designed for TETRA (Terrestrial Trunked Radio, formerly known as Trans European Trunked Radio) applications. TETRA networks are already operational in all the traditional PMR market segments, such as Public Safety, Transportation, Utilities, Government, PAMR, Commercial & Industry and Oil & Gas. GaN HEMT technology is used and attached on a copper sub carrier. It is connected by using bias and in/out matching circuit method with gold wire bonding.

Electrical Specifications @ V_{ds}=28V, V_{gs} @Idq, Ta=25 °C

PARAMETER	UNIT	MIN	TYP	MAX	CONDITION
Frequency Range	MHz	100	1	1000	ZS = ZL = 50 ohm
Power Gain @P1dB	dB	12	15	-	
Pout @ P1dB	dBm	36	38	-	Vds = +28V
Efficiency @ P1dB	%	40	55	-	Vgs @Idq
Ids @ P1dB	mA	-	475	700	Idq = 5mA
Pout @ P3dB	dBm	38.5	40	-	
Input Return Loss	dB	-	-10	-5	Vds= +28V, Idq=150mA
Supply Voltage	V	Vgs@Idq=1mA	Vgs@Idq	Vgs@Idq=5mA	Vgs
	V	-	28	-	Vds

Caution

The drain voltage must be supplied to the device after the gate voltage is supplied

Turn on: Turn on the Gate Voltage supply and last turn On the Drain voltage supplies

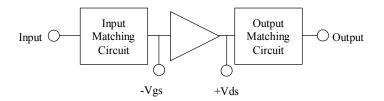
Turn off: Turn off the Drain Voltage and last turn off the Gate voltage

Note

TG Series have internal DC blocking capacitors at the RF input and output ports

Mechanical Specifications

PARAMETER	UNIT	ТҮР	REMARK
Mass	g	1	-
Dimension	mm	15 x 10 x 5.4	Outermost

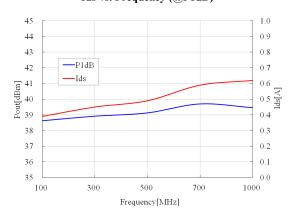

Absolute Maximum Ratings

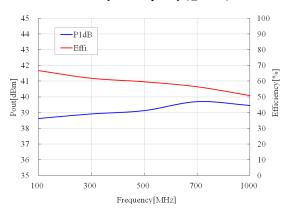
PARAMETER	UNIT	RATING	SYMBOL
Gate-Source Voltage	V	- 10 ∼ 0	Vgs
Drain-Source Voltage	V	50	Vds
Gate Current	mA	3.6	Ig
Operating Junction Temperature	°C	225	T_{J}
Operating Case Temperature	°C	-40 ~ 85	T _C
Storage Temperature	°C	-40 ∼ 100	T_{STG}
Load Mismatch		5:1 (all load phase)	

Operating Voltages

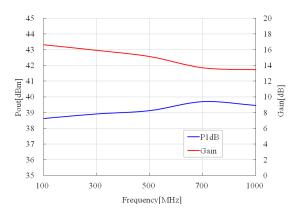
PARAMETER	UNIT	MIN	TYP	MAX	SYMBOL
Drain Voltage	V	-	+28	-	Vds
Gate Voltage (on-state)	V	-	Vgs@Idq	-2	Vgs
Gate Voltage (off-state)	V	-	-8	-	Vgs

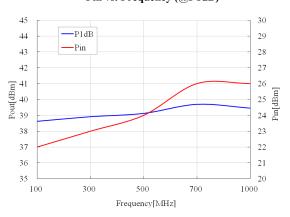
Block Diagram

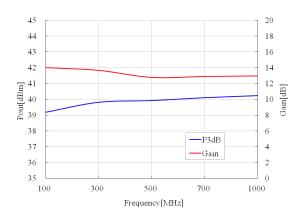


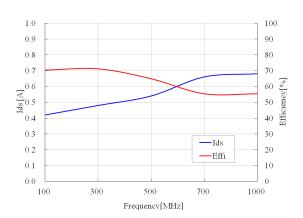

Performance Charts

* Bias condition @ Idq=5mA, Vgs@Idq, Vds =+28V, Ta=25 °C

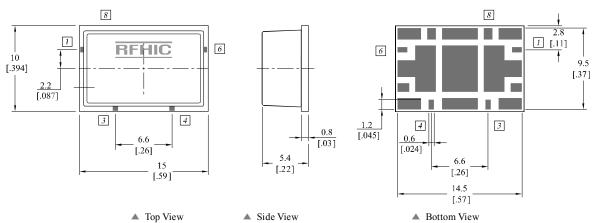

Ids vs. Frequency (@P1dB)

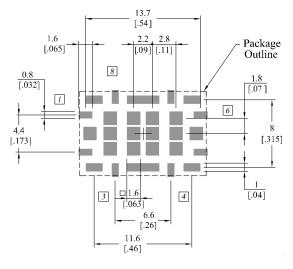

Efficiency vs. Frequency (@P1dB)


Power Gain vs. Frequency (@P1dB)

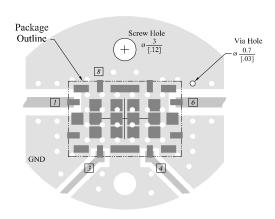

Pin vs. Frequency (@P1dB)

P3dB & Gain vs. Frequency


Ids & Efficiency vs. Frequency (@ P3dB)


Package Dimensions (Type: NP-18)

* Unit: mm[inch] | Tolerance: ±0.15[.006]



Pin Description									
Pin No Function Pin No Function Pin No Function Pin No Function									
1	RF Input	3	Gate Bias (-Vgs)	5	GND	7	GND		
2	GND	4	Drain Bias (+Vds)	6	RF Output	8	GND		

Recommended Pattern

Recommended Mounting Configuration

* Mounting Configuration Notes

- 1. For the proper performance of the device, Ground / Thermal via holes must be designed to remove heat.
- 2. To properly use heatsink, ensure the ground/thermal via hole region to contact the heatsink. We recommend the mounting screws be added near the heatsink to mount the board
- 3. In designing the necessary RF trace, width will depend upon the PCB material and construction.
- 4. Use 1 oz. Copper minimum thickness for the heatsink.
- 5. Do not put solder mask on the backside of the PCB in the region where the board contacts the heatsink
- 6. We recommend adding as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.

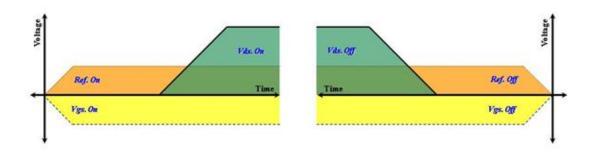
Precautions

This product is a Gallium Nitride Transistor.

The Gallium Nitride Transistor requires a Negative Voltage Bias which operates alongside a Positive Voltage Bias. These Biases are applied in accordance to the Sequence during Turn-On and Turn-Off.

The Pallet Amplifier does not have a built-in Bias Sequence Circuit. Therefore, users need to either apply positive voltages and negative voltages in the required sequence, or add an external Bias Circuit to this Amplifier.

The required sequence for power supply is as follows.


During Turn-On

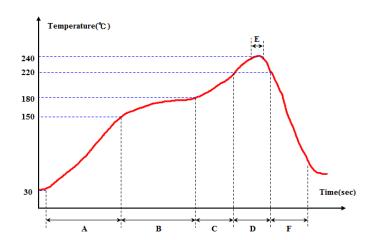
- 1. Connect GND.
- 2. Apply Vgs.
- 3. Apply Vds.
- 4. Apply the RF Power.

During Turn-Off

- 1. Turn off RF power.
- 2. Turn off Vds, and then, turn off the Vgs.
- 3. Remove all connections.

Turn On

- Sequence Timing Diagram -



Reflow Profile

* Reflow oven settings

Zone	A	В	C	D	E	F
Temperature(°C)	30 ~ 150 ℃	150 ~ 180 ℃	180 ~ 220 ℃	220 ~ 220 ℃	235 ~ 240 ℃	$2 \sim 6$ °C Sec Drop
Belt speed	55 ~ 115 sec	55 ~ 75 sec	30 ∼ 50 sec	30 ∼ 50 sec	5 ~ 10 sec	60 ~ 90 sec

* Measured reflow profile

Ordering Information

Part Number	Package Design		
	-R (Reel)		
TG1000-10	-B (Bulk)		
	-EVB (Evaluation Board)		

Revision History

Part Number	Release Date	Version	Modification	Data Sheet Status
TG1000-10	2014.06.26	1.1	- A mass of mechanical specification is changed.	-
TG1000-10	2012.01.18	1.0	 This is formally released. A Format is changed at Parameters of Specification. Performance graphs of P3dB are added to 'Chart' part. 	-
TG1000-10	2012.01.08	0.93	- Parameters of specifications are changed.	Preliminary

RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use.

Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at 919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-250-5078.